鄰棟建築頂部風場
及渦流溢放特性之研究

內政部建築研究所協同研究報告
中華民國 96 年 12 月
鄰棟建築頂部風場及渦流溢放特性之研究

研究主持人：李主任秘書玉生
共同主持人：苗教授君易

內政部建築研究所協同研究報告
中華民國 96 年 12 月
符號說明

D：模型特徵長度（方柱寬度）
Ho: 目標模型高度
Hr: 參考模型高度
Uo: 目標模型頂部之平均參考風速
f: 渦流溢放的頻率
ρ : 空氣密度
ν : 運動黏滯係數
Fd: 主流向的阻力
FL: 橫風向受風力
S : 參考模型與目標模型的距離
Re: 雷諾數(Reynolds numbers)
St: 史特數(strouhal numbers)
δ : 邊界層厚度
CD: 主流向的阻力係數
CL: 橫風向受風力係數
Cp: 壓力係數
目次

<table>
<thead>
<tr>
<th>項目</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>目次</td>
<td>I</td>
</tr>
<tr>
<td>表次</td>
<td>III</td>
</tr>
<tr>
<td>圖次</td>
<td>IV</td>
</tr>
<tr>
<td>摘要</td>
<td>XII</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>XV</td>
</tr>
<tr>
<td>第一章 緒論</td>
<td>1</td>
</tr>
<tr>
<td>第一節 研究緣起與背景</td>
<td>1</td>
</tr>
<tr>
<td>第二章 文獻回顧</td>
<td>5</td>
</tr>
<tr>
<td>第一節 相關研究</td>
<td>5</td>
</tr>
<tr>
<td>第二節 耐風設計規範</td>
<td>7</td>
</tr>
<tr>
<td>第三章 研究方法</td>
<td>10</td>
</tr>
<tr>
<td>第一節 實驗方法</td>
<td>10</td>
</tr>
<tr>
<td>第二節 量測分析項目</td>
<td>18</td>
</tr>
<tr>
<td>第三節 數值方法</td>
<td>19</td>
</tr>
<tr>
<td>第四章 結果與討論</td>
<td>20</td>
</tr>
<tr>
<td>第一節 油流實驗</td>
<td>20</td>
</tr>
<tr>
<td>第二節 穩態數值模擬結果</td>
<td>26</td>
</tr>
<tr>
<td>第三節 目標柱體表面壓力分佈結果</td>
<td>32</td>
</tr>
<tr>
<td>第四節 風力係數實驗結果</td>
<td>49</td>
</tr>
</tbody>
</table>
第五節 目標柱體下游渦流溢放量測 69
第五章 結論與建議 .. 73
 第一節 結論 .. 73
 第二節 建議 .. 74
参考書目 .. 76
表次

表 2-1 地況相關參數 .. 8
表 3-1 實驗用流場條件 .. 18
表 4-1 單柱模型之 Cd ... 50
表 4-2 單柱之升力係數 ... 57
表 4-3 雙柱實驗升力係數 (Hr/Ho=2D/2D) 58
表 4-4 雙柱實驗升力係數 (Hr/Ho=4D/2D) 58
表 4-5 雙柱實驗升力係數 (Hr/Ho=6D/2D) 58
表 4-6 雙柱實驗升力係數 (Hr/Ho=2D/4D) 59
表 4-7 雙柱實驗升力係數 (Hr/Ho=4D/4D) 59
表 4-8 雙柱實驗升力係數 (Hr/Ho=6D/4D) 59
表 4-9 雙柱實驗升力係數 (Hr/Ho=2D/6D) 60
表 4-10 雙柱實驗升力係數 (Hr/Ho=4D/6D) 60
表 4-11 雙柱實驗升力係數 (Hr/Ho=6D/6D) 60
圖次

圖 3-1 鄰棟建築物模型實驗架設圖 ············ 11
圖 3-2 電子式壓力掃瞄器 ···················· 12
圖 3-3 熱線探針 ···························· 13
圖 3-4 熱線測速儀 ···························· 13
圖 3-5 皮托管 ······························ 14
圖 3-6 薄膜式壓力計 ·························· 15
圖 3-7 資料擷取系統 ·························· 16
圖 3-8 研究個案示意圖 ····················· 17
圖 4-1 油流實驗架設圖 ························ 21
圖 4-2 縱列模型地表下游油流結果(Hr/Ho=4/6) · 22
圖 4-3 縱列目標柱表油流結果(Hr/Ho=4/6) ····· 22
圖 4-4 縱列目標柱地表油流結果(Hr/Ho=2/6) ····· 23
圖 4-5 縱列目標柱表面油流結果(Hr/Ho=2/6) ····· 23
圖 4-6 縱列目標柱地表油流結果(Hr/Ho=6/6) ····· 24
圖 4-7 縱列目標柱表面油流結果(Hr/Ho=4/6) ····· 24
圖 4-8 橫列目標柱地表油流結果(Hr/Ho=2/6) ····· 25
圖 4-9 橫列目標柱表面油流結果(Hr/Ho=2/6) ····· 25
圖 4-10 縱列在近地面Z~0D截面數值結果(Hr/Ho=2/6)
圖 4-11 縱列在中心剖面數值結果(Hr/Ho=2/6) 27
圖 4-12 縱列在高度 6D 截面結果(Hr/Ho=2/6) 27
圖 4-13 縱列高 2 在 Z=0D 截面數值結果(Hr/Ho=6/2) 28
圖 4-14 縱列在中心截面數值結果(Hr/Ho=6/2) 28
圖 4-15 縱列在高度 2D 截面數值結果(Hr/Ho=6/2) 29
圖 4-16 縱列高度比 6D/6D 在近地面 Z=0D 數值結果 30
圖 4-17 縱列高度比 6D/6D 在中心截面數值結果 30
圖 4-18 縱列高度比 6D/6D 在高度 6D 數值結果 31
圖 4-19 模型頂部壓力孔排列位置圖 32
圖 4-20 Ho=2D 頂部壓力實驗結果 33
圖 4-21 Ho=6D 頂部壓力實驗結果 33
圖 4-22 頂部平均壓力實驗結果(Hr/Ho=2D/2D, S=0.5D) 34
圖 4-23 頂部平均壓力實驗結果(Hr/Ho=2D/2D, S=1D) 34
圖 4-24 頂部平均壓力實驗結果(Hr/Ho=2D/2D, S=2D) 34
圖 4-25 頂部平均壓力實驗結果(\(H_r/H_o=4D/2D, S=0.5D\))

圖 4-26 頂部平均壓力實驗結果(\(H_r/H_o=4D/2D, S=1D\))

圖 4-27 頂部平均壓力實驗結果(\(H_r/H_o=4D/2D, S=2D\))

圖 4-28 頂部平均壓力實驗結果(\(H_r/H_o=6D/2D, S=0.5D\))

圖 4-29 頂部平均壓力實驗結果(\(H_r/H_o=6D/2D, S=1D\))

圖 4-30 頂部平均壓力實驗結果(\(H_r/H_o=6D/2D, S=2D\))

圖 4-31 頂部平均壓力實驗結果(\(H_r/H_o=2D/4D, S=0.5D\))

圖 4-32 頂部平均壓力實驗結果(\(H_r/H_o=2D/4D, S=1D\))

圖 4-33 頂部平均壓力實驗結果(\(H_r/H_o=2D/4D, S=2D\))

圖 4-34 頂部平均壓力實驗結果(\(H_r/H_o=4D/4D, S=0.5D\))
圖 4-35 頂部平均壓力實驗結果\((H_r/H_o=4D/4D, S=1D)\) 39

圖 4-36 頂部平均壓力實驗結果\((H_r/H_o=4D/4D, S=2D)\) 40

圖 4-37 頂部平均壓力實驗結果\((H_r/H_o=6D/4D, S=0.5D)\) 40

圖 4-38 頂部平均壓力實驗結果\((H_r/H_o=6D/4D, S=1D)\) 41

圖 4-39 頂部平均壓力實驗結果\((H_r/H_o=6D/4D, S=2D)\) 41

圖 4-40 頂部平均壓力實驗結果\((H_r/H_o=2D/6D, S=0.5D)\) 42

圖 4-41 頂部平均壓力實驗結果\((H_r/H_o=2D/6D, S=1D)\) 42

圖 4-42 頂部平均壓力實驗結果\((H_r/H_o=2D/6D, S=2D)\) 42

圖 4-43 迎風面平均壓力實驗結果\((H_r/H_o=2D/2D, S=0.5D)\) 43
圖 4-44 迎風面平均壓力實驗結果 (Hr/Ho=2D/2D, S=1D) ... 44
圖 4-45 迎風面平均壓力實驗結果 (Hr/Ho=2D/2D, S=2D) ... 44
圖 4-46 迎風面平均壓力實驗結果 (Hr/Ho=6D/2D, S=0.5D) ... 45
圖 4-47 迎風面平均壓力實驗結果 (Hr/Ho=6D/2D, S=1D) ... 45
圖 4-48 迎風面平均壓力實驗結果 (Hr/Ho=6D/2D, S=2D) ... 45
圖 4-49 都市地況迎風面壓力係數 (Hr/Ho=2D/2D, S=0.5D) ... 46
圖 4-50 都市地況迎風面壓力係數結果 (Hr/Ho=2D/2D, S=1D) ... 46
圖 4-51 都市地況迎風面壓力係數結果 (Hr/Ho=2D/2D, S=2D) ... 47
圖 4-52 都市地況迎風面壓力係數 (Hr/Ho=6D/2D, S=0.5D) ... 47
圖 4-53 都市地況迎風面壓力係數結果
(Hr/Ho=6D/2D，S=1D) 48

圖 4-54 都市地況迎風面壓力係數結果

(Hr/Ho=6D/2D，S=2D) 48

圖 4-55 六力平衡儀實驗架設示意圖及座標定義 49

圖 4-56 平均阻力係數結果(Hr/Ho=2D/2D) 50

圖 4-57 平均阻力係數結果(Hr/Ho=4D/2D) 51

圖 4-58 平均阻力係數結果 Hr/Ho=6D/2D 51

圖 4-59 平均阻力係數結果 Hr/Ho=2D/4D 52

圖 4-60 平均阻力係數結果(Hr/Ho=4D/4D) 52

圖 4-60a 平均阻力係數結果(Hr/Ho=6D/4D) 53

圖 4-61 平均阻力係數結果(Hr/Ho=2D/6D) 53

圖 4-62 平均阻力係數結果(Hr/Ho=4D/6D) 54

圖 4-63 平均阻力係數結果(Hr/Ho=6D/6D) 54

圖 4-64 Ho=2D 模型之頻譜圖 55

圖 4-65 Ho=4D 模型之頻譜圖 55

圖 4-66 Ho=6D 模型之頻譜圖 55

圖 4-67 Ho=2D 目標模型雙柱實驗之 St 與 Re 結果 56

圖 4-68 Ho=4D 目標模型雙柱實驗之 St 與 Re 結果 56

圖 4-70 Ho=6D 目標模型雙柱實驗之 St 與 Re 結果 57
圖 4-71 平均阻力係數結果 (Hr/Ho=2D/6D) ······ 61
圖 4-72 橫風向平均風力係數結果 (Hr/Ho=2D/6D) 61
圖 4-73 橫風向平均風力係數結果 (Hr/Ho=4D/6D) 62
圖 4-74 橫風向平均風力係數結果 (Hr/Ho=4D/6D) 63
圖 4-75 橫風向平均風力係數結果 (Hr/Ho=2D/4D) 64
圖 4-76 橫風向平均風力係數結果 (Hr/Ho=2D/4D) 64
圖 4-77 橫風向平均風力係數結果 (Hr/Ho=6D/4D) 65
圖 4-78 橫風向平均風力係數結果 (Hr/Ho=6D/4D) 65
圖 4-79 橫風向平均風力係數結果 (Hr/Ho=2D/2D) 66
圖 4-80 橫風向平均風力係數結果 (Hr/Ho=2D/2D) 67
圖 4-81 橫風向平均風力係數結果 (Hr/Ho=6D/2D) 68
圖 4-82 橫風向平均風力係數結果 (Hr/Ho=6D/2D) 68
圖 4-83 熱線架設相關位置示意及俯視圖 ········ 69
圖 4-84 不同高度頻譜圖 (Hr/Ho=2D/2D, S=0.5D) 70
圖 4-85 不同高度頻譜圖 (Hr/Ho=2D/2D, S=2D) ····· 70
圖 4-86 不同高度頻譜圖 (Hr/Ho=6D/2D, S=0.5D) 71
圖 4-87 不同高度頻譜圖 (Hr/Ho=6D/2D, S=2D) ····· 71
鄰棟建築物頂部流場及渦流溢放特性之研究

摘 要

關鍵詞：頂部流場、風洞實驗、表面風壓、目標模型受力

一、研究緣起

近年來政府鼓勵開發利用多種替代能源，而經濟部於民國九十一
年六月發佈了促進產業升級條例細則，條例內容亦鼓勵裝設風力發電
或太陽能發電等設備，以長遠來看風力發電可能會漸漸被推廣至一般
民眾。單一建築物於風域中之流場變化，常為研究建築物風荷重之基
本情況，前人研究亦多著眼於此。然就實際情況而言，都會建築皆為
毗臨而立而非單一存在，甚至於集合式住宅之設計亦常出現此情形。
因此，相鄰建築物間於風場中之交互作用，便為本研究之主要課題。

二、研究方法

本研究之工作包括風洞模型試驗與數值模擬計算兩個部份，茲分
述如後：

(1)風洞模型試驗

1. 來流風況

除均勻來流外，本研究擬於針對代表大型都會中心地形的大氣邊
界層形式之來流風場中進行實驗量測，目標邊界層平均風速剖面以指
數律表示之指數約為 0.32(地況 A)，邊界層厚度約為 1.5 米。

2. 建物模型

建築模型為三維方柱以壓克力板黏合製作，方柱的寬度為
150mm，以模型寬度為特徵長度 D，製作不同高度的模型，高度分別
為 300mm、600mm 及 900mm 三種方柱模型，高寬比分別為 2、4 及 6，
相應之阻塞比低於 4%。

3. 模型排列及間距比
模型排列方式有縱向與横向排列兩種，兩個模型之間距比分別為
0.5D、1D 及 2D(對應距離為 75mm、150mm 及 300mm)，並探討實驗結果
差異。
（2）數值模擬
數值模擬是採用商用軟體 FLUENT 進行相關計算，紊流模型為 K-
ε 模型，將不同高寬比及不同排列方式進行數值模擬，網格為結構性
網格，有 90 萬格點數，採用局部加密方式進行計算。
三、重要發現
在縱向排列與横向排列方式，配合上不同間隙比，在不同雷諾數
條件下，對目標模型頂部風壓分佈、下游渦流溢放情形及受力情況進
行瞭解。由目前結果可以發現參考建築物與目標建築物高度差距是會
影響目標建築物頂部壓力分佈情況，當前方模型高度高於後方模型高
度時，對後方模型頂部有有較明顯的負壓區產生，在縱向排列上，在
都市型地況下，迎風面壓力分佈結果可以發現，中間區域都是較為低
壓的區域。由不同高度的渦流溢放實驗結果上可以發現，前方模型高
度較高時有較強的渦流溢放訊號，後續應規劃更多雙棟建築物之排列
組合狀況，以確立邊界層流中雙棟建築物之風力特性，而且縱向排列
方式對目標模型影響較大。
四、主要建議事項
由目前結果可以發現參考建築物與目標建築物高度差距是會影響
目標建築物頂部壓力分佈情況，後續應規劃更多雙棟建築物之排列組
合狀況，以確立邊界層流中雙棟建築物之風力特性，而且縱向排列方
式對目標模型影響較大。目前規範對於頂部風場的探討較少，有關於
風壓部分著重於女兒牆內外壓力的探討，可以在頂部流場風壓上規劃
更多的量測，以利其他使用者之參考。
在低雷諾數或三維流場量測下有較多雜訊產生，可以藉由數據分
鄰棟建築物頂部流場及渦流溢放特性之研究

析方式(如小波轉換或 Hilbert 轉換)尋找出相關影響的機制。
ABSTRACT

Keywords: free end velocity distribution 、 wind tunnel experimental 、 surface pressure

This study experimentally investigates the free end surface pressure distribution and wind force on the objective building. The experimental conditions include single building and two buildings side-by-side arrangement type with different gap ratios. The electronic pressure scanner can measure the fluctuating wind pressures pressure taps simultaneously. Based on the pressure measurement, the mean pressure distributions can be evaluated. From the vortex shedding experimental result, we can find the vortex shedding signals are more clearly, when the reference model height is more than objective model height. Based on the force measurement, we can find the Cd is negative value at large aspect ratio of the reference model.

From the experimental results, we can find that the reference model height 、 arrangement type and interval space are important factors on the objective model wind load. So we have two main suggestions on the future work. One is getting more data-base on the two buildings wind tunnel experiments, the other is to analyze the experiment data by HHT method.
第一章 緒 論

第一節 研究緣起與背景

壹、研究緣起

近年來政府鼓勵開發利用多種替代能源，而經濟部於民國九十一年六月發佈了促進產業升級條例細則，條例內容亦鼓勵裝設風力發電或太陽能發電等設備，以長遠來看風力發電可能會漸漸被推廣至一般民眾。近年來已有小型風力發電機裝置於樓頂，目前國內已有廠商完成200W至1000W垂直式發電機的產品，其外觀尺寸之寬度與高度約為2-3m。無論在都會區或是郊區，這種發電機的可能裝置地點之一即是在建築物的頂樓，因為頂樓的風速較高，發電機運轉的效能較高較具有利用價值。矩形建築物在風域中紊流流場之特性分析一向是建築研究領域中重要的一環。在這個考慮之下，樓頂的風場特性表現具有絕對的影響，所考慮的風場特性包含平均風速分佈及速度擾動量的大小。

單一高層建築物於風域中之流場變化，常為研究建築物風荷重之基本情況，單一建築物模型風洞測試是一個基本情況，其測試項目包含了表面風壓、受風載重、風阻試驗等項目，但是對於頂部流場的觀察較缺乏，其主要原因是在該區域的流場複雜，有一個大的尾流區(wake region)。關於單一錐形體模型(圓型或方型截面)頂部區域的風場特性，在95年的協同研究案中進行了實驗研究，本研究擬參考前研究之實驗方法與成果進一步考慮相鄰兩方柱相互影響對樓頂區域風場特性的改變。
貳、研究目的

本研究主要探討鄰棟建築物頂部流場及渦流溢放的特性，計畫目標有如下：

(1) 系統化地探討不同高寬比情況與建築物幾何條件之改變對頂部流場之影響趨勢，以提供工程分析參考。
(2) 系統化實驗目標建築物與鄰棟建築物排列方式，並探討縱向排列與橫向排列結果。
(3) 改變不同的來流風場狀況，探討不同流場狀況下，目標建築物頂部流場影響狀況。
(4) 利用套裝軟體進行數值模擬，提供實驗的參考與結果之比對。

參、研究方法

本研究之工作包括風洞模型試驗與數值模擬計算兩個部份，茲分述如後：

(5) (1) 風洞模型試驗

1. 來流風況

除均勻來流外，本研究擬於針對代表大型都會中心地形的大氣邊界層形式之來流風場中進行實驗量測，目標邊界層平均風速剖面以指數律表示之指數約為 0.32(地況 A)，邊界層厚度約為 1.5 米。喜

2. 建物模型

建築模型為三維方柱以壓克力板粘合製作，方柱的寬度為 150mm，以模型寬度為特徵長度 D，製作不同高度的模型，高度分別為 300mm、600mm 及 900mm 三種方柱模型，高寬比分別為 2、4 及 6，相應之阻塞比低於 4%。

3. 模型排列及間距比

模型排列方式有縱向與橫向排列兩種，兩個模型之間距比分別為
0.5D、1D及2D（對應距離為75mm、150mm及300mm），並探討實驗結果差異。

（6）（2）數值模擬

數值模擬是採用商用軟體FLUENT進行相關計算，紊流模型為K-ε模型，將不同高寬比及不同排列方式進行數值模擬，網格為結構性網格，有90萬格點數，採用局部加密方式進行計算。

（7）研究步驟：

1. 風洞模型試驗
 ①試驗設施規劃與設計。
 ②模型與試驗機構製作與建構。
 ③模型試驗與量測。

2. 數值模擬
 ①網格建立。
 ②紊流模式測試。
 ③數值計算結果與實驗比。
 ④結論與成果報告
鄰棟建築物頂部流場及渦流溢放特性之研究
第二章 文獻回顧

單一高層建築物於風域中之流場變化，常為研究建築物風荷重之基本情況，前人研究亦多著眼於此。然而在都市地區很少只有單一建築物，大多數建築物都是毗鄰而立，而相鄰建築物頂部風場交互作用，不同排列狀況便有不同的結果產生。

第一節 相關研究

Sakamoto 與 Arie(1983)曾經提出圓柱與方柱在紊流邊界層中渦流溢放的觀察，分別使用不同寬高比的模型置入紊流邊界層中，可以找出 St(Strouhal No.)與模型寬高比之間的關係，而且其結果會因雷諾數的不同而改變。

Sitheeq(1997)等人將 10cm×10cm×25cm 方柱置於模擬不同流況的大氣邊界層，以壓力掃描閥量取表面瞬時壓力、擾動壓力係數及平均壓力等，在不同流況下量測風場紊流強度和積分尺度對模型上方及側向再回復現象。

Okajima(1984)橫向排列的兩個方柱研究上作了許多風洞的實驗，其主要在探討雙柱之間不同間隙時，不同雷諾數下渦流溢放頻率關係，當間距在 1～1.5D 時，後方的尾流場較不安定。

Murakami(1988) 對立方柱進行過相關的數值模擬，他認為當流體通過方形柱體，在前端銳緣處會產生分離，會在下游有一個在接觸區，背風面會產生一個渦流區。而在頂部流場會有一個逆流的區域。

Kobayasi(1976)採用風洞量測均勻流來流下在雷諾數為 1.2~7.6×10^5 於不同間距比作用在橫列雙方柱之昇力係數及阻力係數分佈。實
鄰棟建築物頂部流場及渦流溢放特性之研究

驗結果顯示於兩方柱極為接近（S/D ≤ 0.1）時 \(\overline{C_D} \) 有最大值，而隨著間距比之增加，方柱相應之阻力係數呈現漸滅之趨勢。此外，兩方柱之昇力係數於所有間距比情況下皆不為零。

Sarode 等（1981）於實驗研究中發現，紊流場中橫向排列之雙方柱其平均阻力係數（\(\overline{C_D} \)）皆比單一柱體時為高。而當間距比（S/D）小於 3 時，\(\overline{C_D} \) 值隨間距之增大而呈現上昇的趨勢。

Sun 等（1995）於雷諾數為 1.03×10^5 時，量測不同寬深比之雙矩柱（含雙方柱）於各間距比下所相應之流場特性。實驗中發現，當 2 個方柱為橫向排列時，在微小間距比（S/D<0.1）其壓力分布近似於寬深比為 0.5 之單一矩柱。而其間距比小於 2 時，雙方柱之中間隔流系成穩定地偏向其中一柱。導致上下方相應之平均阻力係數（\(\overline{C_D} \)）不同，並隨著間距之加大兩柱之\(\overline{C_D} \) 值趨於一致，於間距比大於 3 後其值約與單一方柱相同。而於雙柱縱向排列時發現，在間距比為 3.5 時，後柱之\(\overline{C_D} \) 值由負值轉為正值。

Tutar 等（2002）在探討雙棟並排建築物流場的數值模擬研究成果指出，對於同樣高度的雙棟並排建築物而言，隨著兩建築物間距的增大，所產生氣流渦漩的強度反而減小。LES 模擬方法中的 RNG 次網格尺寸模型運用在雙棟並排建築物的大氣流場時，大致而言具有較佳的模擬成果且與實驗結果相符。但該模擬方法在預測該並排建築物間通道入口端處的流場時，則仍待檢討改進。

卓勇志（2001）探討雙棟並排矩形建築物（B/D=2, H/D=7.5）在不同間距比之相鄰側風面（confronted side face）之表面風壓，建築物迎風面皆為窄迎風面模式。研究中發現，相鄰面靜態壓力分布：最大負壓之 \(C_p \) 均發生在 \(x/D=0.125, z/D=0.87~0.93 \) 處，分布趨勢與單棟建築側風面相近。\(C_p \) 值隨著間距比縮小而增加負壓。而史特赫數隨著間距比之增大而減小，顯示兩棟建築物越靠近，所產生的渦漩逸散頻率趨勢於 0.5 時轉為相反，間距更小時風速反而減緩。
Miau（1996）等人自由流紊流擾動對並列垂直平板尾流的影響，在不同的自由流紊流擾動情況下，以瞭解間隙流(gap flow)受間距比影響之結果，視流觀察結果顯示，$0 < G/D < 2.0$ 時，間隙流穩定地偏向一側，造成尾流呈非對稱分佈，在 $G/D \geq 2.0$ 後，間隙流不偏向，尾流呈對稱分佈。風洞實驗結果顯示，加入自由流紊流擾動後對於尾流特徵頻率並無影響，但能使卡門渦流串(Karman vortex street)形成處提前發生；對間隙流擺動之影響則使得擺動次數最大值的發生位置有往低間距比移動的趨勢，且由穩定偏向改變成不穩定擺動的間距比會降低；對三維效應之影響則隨紊流擾動的增加，使得三維效應愈明顯。

綜括上述文獻研究成果指出，對於雙棟横向並排的建築物環境風場，無論是二維流況或是三維流況的探討，均能發現隨著建築物之間的間距加大，渦流潰散的程度將逐漸減弱，甚至該間距增大至一定程度時，兩建築物對流場的影響，將不再產生互制效應，亦即形成兩個獨立的單棟建築物環境風場。

第二節 耐風設計規範

壹、風速之垂直分佈

風速隨距地面高度增加而遞增，與地況種類有關，依下列指數律公式計算之:

$$\frac{V_z}{V_{10}} = \left(\frac{z}{10} \right)^\alpha \quad ; \quad 0 \leq z \leq z_g$$

(2-1)

其中，

V_z : 高度 z 處之風速(m/sec)。
V_{10} : 10 公尺高之風速(m/sec)。
鄰棟建築物頂部流場及渦流溢放特性之研究

\[\alpha : \] 相對於 10 分鐘平均風速之垂直分布法則的指數，與地況種類有關，見表 2-1。

\[z_g : \] 梯度高度(m)，與地況種類有關，見表 2-1。

地況種類依建築物所在位置及其附近地表特性而定，分成以下三類:

地況 A：大城市市中心區，至少有 50%之建築物高度大於 20 公尺者。建築物迎風向之前方至少 800 公尺或建築物高度 10 倍的範圍（兩者取大值）係屬此種條件下，才可使用地況 A。

地況 B：大城市市郊、小市鎮或有許多像民舍高度（10~20 公尺），或較民舍為高之障礙物分布其間之地區者。建築物迎風向之前方至少 500 公尺或建築物高度 10 倍的範圍（兩者取大值）係屬此種條件下，方可使用地況 B。

地況 C：平坦開闊之地面或草原或海岸或湖岸地區，其零星星座落之障礙物高度小於 10 公尺者。

若附近地況為介於地況 A 與地況 B 間或地況 B 與地況 C 間之過渡地況，原則上應採用會產生較大風力之地況，但也可利用可信賴之合理分析法，決定此一過渡地況之風速垂直分布。

表 2-1 地況相關參數

<table>
<thead>
<tr>
<th>地況</th>
<th>介</th>
<th>(b)</th>
<th>(\ell(m))</th>
<th>(\delta(m))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第二章 文献回顾
鄰棟建築物頂部流場及渦流溢放特性之研究

第三章 研究方法

第一節 實驗方法

壹、試驗設施與量測設備

本計劃鄰棟建築頂部流場及渦流溢放實驗於貴所位於歸仁之風洞實驗室進行，風洞本體為一垂直向的封閉迴路系統，總長度為77.9m，最大寬度為9.12m，最大高度為15.9m。該風洞有兩個測試區，第一測試區截面積為4米寬2.6米高，該實驗段主要做建築物風場特性的測試，有兩個迴轉盤可以架設模型，本實驗架設於第二迴轉盤上。

建築模型以壓克力板粘合製作，以垂直方式固定於第一測試區截面(4m x 2.6m)之第二轉盤處(如圖3-1)，模型採用不同高寬比之方柱，相應之阻塞比低於4%。模型頂部埋設有180個壓力孔，模型迎風面壓力孔配置因不同高寬比而有不同的壓力孔數。透過壓力傳輸管線系統與量測儀器連接，再利用電子式壓力掃瞄器(Scanivalve; ZOC 33)量測風壓資料(如圖3-2所示)。

模型下游渦流溢放的量測係以熱線(Hot Wire)探針配合恆溫流速儀(Constant Temperature Anemometer; DANTEC 9090N10101)進行實驗(如圖3-3及圖3-4所示)，而入口風速則採用皮托管(如圖3-6所示)配合薄膜式壓力計(VALIDYNE Differential Pressure Transducer; DP103)。

本實驗所使用之量測設備介紹如下：
第三章 研究方法

電子式壓力掃瞄器

表面風壓量測採用電子式壓力掃瞄器(ZOC 33/64 PX；如圖 3-2)，該系統每個單一模組有 64 個壓力輸入管(Pneumatic Inputs)，對應 64 個壓電式壓力感應器，每一個壓力感應器皆可單獨校正，輸入管藉由內徑 1mm PVC 管連接至模型量測點以量測壓力。

而各模組皆連接至壓力訊號處理系統(RAD BASE 3200)，此系統可支援類比數位訊號之轉換，最高可支援 8 個模組，其解析度達 16bit，最大採樣頻率 500Hz，傳輸介面為 USB，具網路控制及傳輸功能。擷取資料轉換完成之後由此系統傳至個人電腦儲存分析。
在必要的風場量測上，本實驗使用 DANTEC 之熱線流速儀 (constant temperature anemometer，如0、0)。熱線探針的率定配合已完成率定的薄膜式壓力轉換器，在風洞入口處地面架上皮托管(平行中心線)，將其動靜壓接於薄膜式壓力轉換器上，孔口位置距離地面 40 cm 高，而熱線探針利用移動機構架於與皮托管孔口等高、平行、盡量接近的位置，最後利用熱線探針所得的電壓值與薄膜式壓力轉換器轉換後的風速得出一條四次方多項式的迴歸曲線。
本實驗中採用皮托管進行來流平均風速之量測，由皮托管所量測到的壓力差值，利用伯努利方程式(Bernoulli equation)，即依據後
鄰棟建築物頂部流場及渦流溢放特性之研究

式計算出相應之風速。

\[U = \sqrt{\frac{2\Delta p}{\rho_{air}}} \]

(3-1)

（11）壓力轉換器

本研究採用的壓力轉換器為薄膜式壓力轉換器 (VALIDYNE DP103-18，如圖 3-7)，具有堅固之金屬外殼，其內部包有一壓電膜片。當受到外部壓力時會導致金屬薄片變形，致使產生電壓變化，再經由訊號放大器讀出電壓值。壓力轉換器若與皮托管 (pitot tube) 連接，經率定後可用以量測流場平均速度。

薄膜式壓力轉換器率定應配合壓力轉換器內部的壓電膜片的受壓範圍，依照其膜片可承受範圍，利用壓力校正器 (DPI 610) 連接兩條短油管傳輸壓力給薄膜式轉換器之動壓與靜壓。壓力由小至大，直到可承受之最大壓力，透過資料擷取系統 (取樣頻率為 256Hz，取樣時間為 70 秒) 將所測之電壓值轉換存檔後，其迴歸率定曲線呈線性型態。

圖 3-5 皮托管
第三章 研究方法

圖 3-6 薄膜式壓力計

（12）資料擷取系統

實驗所量得之類比訊號係經由 IOTECH ADC-488/8SA 擷取後作類比數位 (analog-digital) 轉換 (0)。本系統共有 8 組輸入端，最高採樣頻率為 100 kHz，具有 16-bit 之解析度，精確度 (accuracy) 高達 0.02%。數位化的訊號以大於 200 kb/s 的速度經由 IEEE-488 界面傳至電腦，進行資料儲存與統計運算。
圖 3-7 資料擷取系統

(6) 油流實驗

在進行速度量測前會對流場作油流的視流實驗，以觀察流場定性的特性。本計劃中欲瞭解有限高度圓柱與方柱頂部速度分佈與下游流場渦流溢放的量測，本研究將先進行油流實驗作一定性觀察。將使用二氧化鈦、油酸及白蠟油依照 3：1：6 的比例進行調製。在實驗過程中因為實驗條件不同二氧化鈦與白蠟油的比例需要作調整，在風速較低的情況下需要降低二氧化鈦的比例用以增加混和液的流動性；如果在風速較高或者實驗面積較大的情況下需要增加混和液黏滯性，所以要增加二氧化鈦的比例。觀察三維鈍形體頂部流場時，吾人將油流混和劑以油漆刷均勻塗抹於模型表面，而後啟動風洞進行實驗。要觀察鈍形體近地面尾流部分時，吾人將模型架設時，在模型與風洞迴轉盤中間加上一塊 1.2mx2.4m 的黑色美耐版，將調製好的油流混和劑均勻塗抹於美耐版上，然後啟動風洞進行吹試。實驗進行時間需要直接觀察油流的情況，直到油流略微凝固不再有變化，便停止風扇運轉進入風洞內以數位單眼相機進行拍攝。雖然所得為定性結果，但是可以藉由所拍
攝照片觀察出流場初步結構，對後續速度及壓力場的量測可以提供感測器擺放位置參考。

貳、試驗狀況

試驗所採用的主要變數有高寬比(H/D)間距比(S/D)及邊界層特性(採用均勻都市)，建築物高寬比(H/D)有2、4及6，本研究之參數定義與實驗配置如圖3-8所示。規劃測試風速範圍為10m/s至20m/s，雷諾數分布約在10^5至2×10^5之間。模型配置之間距比採用0.5、1、2(相應距離為7.5、15、30公分)，並將縱列與橫列方式作比對分析。

研究中邊界層來流欲採用均勻(Uniform)與都市等2種特性之地況，邊界層流場特性如表3-1所示。
表3-1 實驗用流場條件

<table>
<thead>
<tr>
<th>參數</th>
<th>地況 B</th>
<th>地況 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>邊界層厚度 δ (cm)</td>
<td>138.82</td>
<td>139.19</td>
</tr>
<tr>
<td>層緣風速 U_δ (m/s)</td>
<td>14.21</td>
<td>15.35</td>
</tr>
<tr>
<td>幂數率 α</td>
<td>0.21</td>
<td>0.32</td>
</tr>
<tr>
<td>剪力速度 u* (m/s)</td>
<td>0.64</td>
<td>1.10</td>
</tr>
<tr>
<td>粗糙長度 z_0 (cm)</td>
<td>6.01×10^{-2}</td>
<td>0.83</td>
</tr>
<tr>
<td>地表阻力係數 C_d</td>
<td>2.0×10^{-3}</td>
<td>5.02×10^{-3}</td>
</tr>
</tbody>
</table>

第二節 量測分析項目

由單點風壓歷時資料可計算得單點之平均與擾動性風壓係數，配合歷時資料的合成可計算的平均與擾動性之阻力/橫風向升力係數。各係數定義如下：

平均風壓係數 \(C_p = \frac{\bar{P}}{\frac{1}{2} \rho U^2} \) \((3-2) \)

平均阻力係數 \(C_D = \frac{\bar{F}_D}{\frac{1}{2} \rho U^2 HD} \) \((3-3) \)

平均昇力係數 \(C_L = \frac{\bar{F}_L}{\frac{1}{2} \rho U^2 HD} \) \((3-4) \)
第三章 研究方法

第三節 數值方法

本研究採用一商用軟體 (FLUENT) 做為模擬定常流場的工具，其求解 Navier-Stokes 方程式：

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0 \tag{3-5}
\]

\[
\frac{\partial (\rho \vec{V})}{\partial t} + \nabla \cdot (\rho \vec{V} \vec{V}) = -\nabla P + \nabla \cdot (\mu \nabla \vec{V}) \tag{3-6}
\]

以上 \(\rho \) 為密度，\(\vec{V} \) 為速度，\(P \) 為壓力，\(\mu \) 為黏滯係數。並使用結構性形心有限體積法 (Cell-Centered Finite Volume Method)，流場變數如速度、壓力等都存置於每個網格的形心上。在求解 (3-5) 和 (3-6) 式，則採用 Pressure-Based Method 的 SIMPLEC (Semi-Implicit Method for Pressure-Linked Equation Consistent) 演算法則。計算流場網格以二維結構性多區域網格 (2-D Structured Multi-Zone Grid) 處理，空間插分用二階上風 (Upwind) 法，而求解定常流場則忽略對時間的微分項；在求解非定常流場時間積分則採用二階準確之 Crank-Nicolson 方法。首先計算出一定常流場的結果，再以定常結果當作初始條件的流場，並開始計算隨時間變化之非定常流場。
第四章 結果與討論

第一節 油流實驗

進行渦流溢放的實驗前，先進行油流實驗，所以定性的結果可以觀察出尾流區域的大小，而尾流區域內的流場狀況為逆流場，所以無法使用熱線或皮托管進行量測，在進行速度場量測或壓力場量測前必須先進行油流實驗，可以對所欲進行實驗的流場結構有初步瞭解，以利後續實驗進行。

實驗位置在第一測試區第二迴轉盤進行（如圖 4-1），入口風速為 13.5m/s，兩方柱之間的距離為 1D，改變不同高寬比模型進行實驗，觀察目標模型表面及模型下游流場油流實驗結果，並針對所得到結果進行分析比較。

當使用兩個方柱為縱向排列（排列方向與來流方向平行），在前方柱（參考模型）高寬比為 4，目標方柱為高寬比為 6，雷諾數為 1.16 ×10^5，模型下游之油流結果如圖 4-2 所示，可以由圖上觀察出在方柱後方 1D 的位置尾流區的大小約為 1D，目標方柱下游有一馬蹄窩的流場結構；目標方柱表面的油流的結果如圖 4-3 所示，側面油流結果受到前方方柱的影響，產生一個明顯的分離線，高度約在 3.75~4D 位置，與前方參考模型的高度相當，由目前結果後方觀察不出特殊的流場結構，其原因是目標柱體頂部速度場較小，所以油流試劑比例須要調整較有流動性。

改變參考模型高度為 2D，目標模型高度維持 6D，使用相同的雷諾數下進行油流實驗，模型下游的油流實驗結果如圖 4-4 所示，可以由圖上觀察出在方柱後方 1D 的位置尾流區的大小約為 1.5D，且由圖上可以觀察有油流飛濺的跡象，這是目標模型下游流場的三
第四章 結果與討論

維性質所造成的結果；目標方柱表面的油流的結果如圖 4-5 所示，側面油流照片上可以看出受到前方參考方柱的影響，產生一個明顯的分離線，高度約在 1~1.5DD 位置，與参考模型高度相當，目標模型頂部油流結果可以看出拋物線形狀的流場分離線。

參考模型高度增加為 6D，而目標模型高度為 6D 的情況下，以相同的來流速度進行實驗，模型下游的油流實驗結果如圖 4-6 所示，由圖上觀察出在兩方柱之間有一個明顯尾流區域，先前參考模型高度為 4D 與 2D 的油流實驗結果上無法明顯觀察出類似的結果，目標模型後方下游 1D 的尾流區域約為 2D 大小，可以觀察出目標柱後方兩個尾流結構較小也較為明顯；目標方柱表面的油流的結果如圖 4-7 所示，側面油流結果並無發現觀察出明顯的分離線，這與前兩個實驗結果差異很大，目標模型頂部油流結果可以看出的流場分離線，但是分離線的外型並非如同先前參考模型高度為 4D 之實驗結果。

![flow]

圖 4-1 油流實驗架設圖
圖 4-2 縱列模型地表下游油流結果(Hr/Ho=4/6)

圖 4-3 縱列目標柱表油流結果(Hr/Ho=4/6)
第四章結果與討論

圖 4-4 縱列目標柱地表油流結果 (Hr/Ho=2/6)

圖 4-5 縱列目標柱表面油流結果 (Hr/Ho=2/6)
本研究將目標模型型與參考模型做橫風向方式排列，目標模型的高度為 6D，參考模型的高度為 2D，兩型間的距離為 1D，來流雷諾數為 1.16×10^5，進行相關的油流實驗，目標模型下游之油流實驗如
第四章結果與討論

圖 4-8 所示，目標模型後方流場受到旁邊模型的影響偏一邊，遠離參考模型那一側後方 1D 位置，分離線大小約為 2D，模型後方停滯區域較縱向排列的結果大，且尾流（wake）結構離目標模型較遠；目標方柱表面的油流的結果如圖 4-9 所示，側面油流結果並無發觀察出明顯的，目標模型頂部油流結果可以看出的流場分離線，但是分離線的受到側邊模型的影響偏向一邊。
鄰棟建築物頂部流場及渦流溢放特性之研究

第二節 穩態數值模擬結果

進行渦流溢放及表面風壓量測前，先使用商用套裝軟體 (FLUENT) 進行模擬，本研究是採用 K-ε 紊流模型，使用結構性網格，模型表面採用加密格點，格點數約為 93 萬，採用二階上風法，模擬的雷諾數為 1.16×10^5。

目前有部分縱向排列的模擬結果，圖 4-10~12 為高度比 2D/6D 的數值模擬結果，圖 4-10 的為近地面流場模擬的結果與圖 4-4 油流所得到結果相似，數值結果可以提供一定的參考價值。圖 4-11 為中心剖面的模擬結果，一為平均壓力分布，另一個為流場流線結果，在迎風面壓力較大，此結果符合物理上的狀態。圖 4-12 為目標建築物高度 (Z=6D) 截面的數值模擬結果，在目標建築物後方可以看有兩個尾流區域互相影響，可以發現後目標模型後方流場相當複雜，部分風洞實驗例如：渦流溢放 (vortex shedding) 量測則需要避開尾流區域。

![圖 4-10 縱列在近地面 Z-0D 截面數值結果(Hr/Ho=2/6)](image)
圖 4-11 縱列在中心剖面數值結果 (Hr/Ho=2/6)

圖 4-12 縱列在高度 6D 截面結果 (Hr/Ho=2/6)

圖 4-13~15 為高度比 6D/2D 的數值模擬結果，圖 4-13 的為近地面流場模擬的結果，由壓力結果可以看出在兩柱之間為低壓區域，由流線圖可以看出在兩柱之間有四個對稱的尾流，目標模型後方也
有兩個對稱的尾流，目前沒有油流實驗可以比較，待日後油流實驗補齊可以作一比對。圖 4-14 為中心線截面數值模擬結果，6D 模型頂部及後方為一低壓區域，頂部壓力最低，後方目標模型也有受到尾流的影響，目標流場後方有 3-4D 的區域是一個逆流場的區域，這是受到前方模型尾流區域的影響。圖 4-15 為目標建築物高度 (Z=2D)截面的數值模擬結果，由壓力結果可以看出前方 6D 模型兩側有低壓區域，流線結果可以看出目標模型前後都有尾流區域，是一個複雜的流場結構。
第四章結果與討論

圖 4-15 縱列在高度 2D 截面數值結果 (Hr/Ho=6/2)

圖 4-16~18 為高度比 6D/6D 的數值模擬結果，圖 4-16 的為兩模型高度比為 6D/6D 近地面流場模擬的結果，由壓力結果可以看出主要的低壓區域在兩方柱之間，由流線圖可以看出在兩柱之間有四個對稱的尾流 (wake) 結構，在目標前緣的尾流 (wake) 結構較小。目標模型後方也有兩個對稱的尾流，這一結果前述目標柱體高度 2D 參考模型高度 6D 結果接近。根據前述目標模型與參考模型高度高度 6D 油流實驗（如圖 4-6 所示），在兩方柱之間也可以觀察出個停滯區域，這可能是由四個尾流結構所構成只是在油流實驗無法很明確觀察出 47 個尾流結構，在油流實驗照片上目標方柱後方也可以觀察出兩個明顯的尾流結構，油流實驗的結果與數值模擬結果相近似。圖 4-16 為中心線截面數值模擬結果，6D 模型頂部及後方為一低壓區域，頂部壓力最低，後方目標模型頂部區域受到前方模型的影響，目標流場後方有 3-4D 的區域是一個逆流場的區域，這是受到前方模型尾流區域的影響。圖 4-18 為目標建築物高度 (Z=6D) 截面的數值模擬結果，由壓力結果可以看出前方 6D 模型兩側有低壓區
鄰棟建築物頂部流場及渦流溢放特性之研究

域，流線結果可以看出目標模型後方尾流區域較小，與前兩個模擬個案的頂部流場結構差異甚大。

圖 4-16 縱列高度比 6D/6D 在近地面 Z~0D 數值結果

圖 4-17 縱列高度比 6D/6D 在中心截面數值結果
第四章結果與討論

圖 4-18 縱列高度比 6D/6D 在高度 6D 數值結果
第三節 目標柱體表面壓力分佈結果

壹、目標柱體頂部壓力分布

本研究將不同高寬比的模型頂部及迎風面依照等間距設立壓力孔進行表面壓力的量測，利用壓力掃描閥進行壓力擾動的量測，每一個壓力孔取樣數目為20000點，壓力孔與壓力孔掃描間隔時間為100×10^{-6}秒，將每一孔壓力數據取平均，且求取C_p變化情形。本實驗的雷諾數在$9 \times 10^4 ~ 1.8 \times 10^5$，圖4-19是頂部壓力孔排列位置圖。

圖4-19模型頂部壓力孔排列位置圖

頂部壓力量測在第一測試區第二迴轉盤進行，先進行高寬比為2及6模型單一方柱的模型實驗，實驗雷諾數為9×10^4與1.8×10^5，其壓力係數實驗結果如圖4-20及圖4-21所示，在高寬比2的情況下，模型上下游各有一個較為高壓力分佈的區域，中間部分是一個低壓力分佈區域。高寬比為6的情況下中間部分壓力分佈相對較高。
第四章結果與討論

(a) $Re=9 \times 10^4$ (b) $Re=1.8 \times 10^5$

圖 4-20 Ho=2D 頂部壓力實驗結果

進行完單柱之後目標模型與參考模型高度比 2D/2D 在不同雷諾數下，在間距（S）為 0.5D、1D 及 2D 實驗結果如圖 4-22 至圖 4-24 所示，由圖上可以觀察出目標模型頂部高壓力區域在靠近迎風面，下游為一個低壓區域，由這 9 個結果可以發現在參考模型與目標模型在相同間隙時，雷諾數效應影響不太明顯，如果是相同間隙不同
鄰棟建築物頂部流場及渦流溢放特性之研究

雷諾數情況下，都是迎風區域壓力分佈較高，下游為低壓區域。

![圖 4-22 頂部平均壓力實驗結果(Hr/Ho=2D/2D，S=0.5D)](image)

(a) Re=0.9*10^4 (b) Re=1.3*10^5 (C) Re=1.8*10^5

![圖 4-23 頂部平均壓力實驗結果(Hr/Ho=2D/2D，S=1D)](image)

(a) Re=9*10^4 (b) Re=1.3*10^5 (C) Re=1.8*10^5

![圖 4-24 頂部平均壓力實驗結果(Hr/Ho=2D/2D，S=2D)](image)

(a) Re=0.9*10^4 (b) Re=1.3*10^5 (C) Re=1.8*10^5
參考模型與目標模型高度比 4D/2D 在不同雷諾數下，在間距（S）為 0.5D、1D 及 2D 當中測得結果如圖 4-25 至圖 4-27 所示。在間距比較小的時候(S=0.5D，圖 4-25)，高壓力分布區集中在中間位置，低壓區域在下游靠近頂部邊緣。當增加間距比，高壓區域逐漸往上游移動，在間距比為 2D 時，移動至迎風面銳緣處。
當參考模型高度增加至 6D，下游目標模型高度維持 2D，改變不同間距比 S=0.5D、1D 及 2D，雷諾數由 9*10^4 與 1.8*10^5，實驗結果如圖 4-28 至 4-30。整個壓力分佈已經為負壓分佈，其原因是流體流經過一較高的參考模型，造成模型下游為一個低壓尾流區域，目標模型頂部受到前方模型尾流區域影響成為負壓區域。當間隙比較小的時候(S=0.5D，圖 4-28)，高壓力分布區集中在中間位置，低壓區域在下游靠近頂部邊緣。當增加間隙比，高壓區域逐漸往上游移動，在間隙比為 2D 時，移動至迎風面銳緣處。
第四章結果與討論

當目標模型高度增加至 4D，下游參考模型高度為 2D，改變不同間距比 S=0.5D、1D 及 2D，雷諾數由 9\times10^4 與 1.8\times10^5，實驗結果如圖 4-31 至 4-33。比較三個圖結果可以發現目標模型頂部下游為低壓區域，目標模型與參考模型間距比加大 (S=1D 及 2D) 時，高低壓區域分布區很接近，當相同間隙比增加其雷諾數，可以發現低壓區域往下游的邊緣靠近。
鄰棟建築物頂部流場及渦流溢放特性之研究

圖 4-31 頂部平均壓力實驗結果 (Hr/Ho=2D/4D，S=0.5D)

(a) Re=9*10^4 (b) Re=1.3*10^5 (C) Re=1.8*10^5

圖 4-32 頂部平均壓力實驗結果 (Hr/Ho=2D/4D，S=1D)

(a) Re=9*10^4 (b) Re=1.3*10^5 (C) Re=1.8*10^5

圖 4-33 頂部平均壓力實驗結果 (Hr/Ho=2D/4D，S=2D)

(a) Re=9*10^4 (b) Re=1.3*10^5 (C) Re=1.8*10^5
第四章結果與討論

當目標模型與下游參考模型高度皆為 4D，改變不同間距比 S=0.5D、1D 及 2D，雷諾數由 9*10^4 與 1.8*10^5，實驗結果如圖 4-34 至 4-36。兩模型間距比較小時 (S=0.5D)，目標模型頂部下游為壓力較高區域，並隨著雷諾數增加趨勢更明顯 (圖 4-34)，當目標模型與參考模型間距比加大 (S=1D 及 2D) 時，高壓區域就移到目標模型上游，特別是在大間距及高雷諾數 (圖 4-36(C))，高壓區域集中在頂部迎風面的銳緣處，間隙比影響在這組模型實驗結果影響較雷諾數效應大。

圖 4-34 頂部平均壓力實驗結果 (Hr/Ho=4D/4D，S=0.5D)

(a)Re=9*10^4 (b)Re=1.3*10^5 (c)Re=1.8*10^5

圖 4-35 頂部平均壓力實驗結果 (Hr/Ho=4D/4D，S=1D)
鄰棟建築物頂部流場及渦流溢放特性之研究

目標模型為 4D，前方參考模型高度增加至 6D，兩個模型間距比 S=0.5D、1D 及 2D，雷諾數由 9*10^4 與 1.8*10^5，實驗結果如圖 4-37 至 4-39。兩模型間距比較小時 (S=0.5D)，目標模型頂部壓力較高區域距離迎風面銳緣（圖 4-37），當間距比加大 (S=1D 及 2D) 時，高壓區域集中在頂部迎風面的銳緣處。
第四章結果與討論

目目標模型高度成為6D，參考模型高度為2D，兩個模型間距比S=0.5D、1D及2D，雷諾數由9\times10^4與1.8\times10^5，實驗結果如圖4-40至4-42。改變雷諾數集間距比，頂部壓力並無太大變化，其原因可能是錢方參考模型與目標模型高度差距較大。
鄰棟建築物頂部流場及渦流溢放特性之研究

(a) Re=9 \times 10^4
(b) Re=1.3 \times 10^5
(c) Re=1.8 \times 10^5

圖 4-40 頂部平均壓力實驗結果 (H_r/H_o=2D/6D, S=0.5D)

(a) Re=9 \times 10^4
(b) Re=1.3 \times 10^5
(c) Re=1.8 \times 10^5

圖 4-41 頂部平均壓力實驗結果 (H_r/H_o=2D/6D, S=1D)

(a) Re=9 \times 10^4
(b) Re=1.3 \times 10^5
(c) Re=1.8 \times 10^5

圖 4-42 頂部平均壓力實驗結果 (H_r/H_o=2D/6D, S=2D)
第四章結果與討論

貳、目標模型迎風面壓力分布

本實驗將進行目標模型迎風面壓力分布量測，目標模型為三維方柱，高寬比分別為 2D、4D 及 6D 三種形式，目標模型與參考模型間距比分別為 0.5D、1D 及 2D，將使用壓力掃描閥進行量測，取樣速率與取樣數與頂部壓力分佈實驗相同，實驗在第一測試區第二迴轉盤進行。

當目標模型高度為 2D 時，參考模型高度為 2D，間隙比由 S=0.5D，模型前方不設置阻尼塊，在該位置處空風洞邊界層厚度約為 1D，改變不同雷諾數，實驗 Cp 結果如圖 4-43 至圖 4-45 所示。S=0.5D 時當雷諾數增大時壓力值由正壓轉為負壓，高壓區域由側邊移動到中間區域。間距比增加時(S=1D 與 2D)，其低壓區域都位於迎風面的中間區域，雷諾數效應不大。

![圖 4-43 迎風面平均壓力實驗結果(Hr/ho=2D/2D，S=0.5D)](image)

(a)Re=9*10^4 (b)Re=1.3*10^5 (c)Re=1.8*10^5
當參考模型高度增加為 6D 時，以前一個實驗相同雷諾數及間隙比進行迎風面的壓力量測，所得 C_p 結果如圖 4-46 至 4-48 所示。在比較小的間隙比，無論在高雷諾數或低雷諾數，其迎風面壓力呈現負壓力，當間隙比增大至 2D 時，有部分的高壓區域已轉為正壓力，其原因應該是逐漸脫離參考圓柱的尾流負壓區域。
第四章 結果與討論

(a)Re=9*10^4 (b)Re=1.3*10^5 (C)Re=1.8*10^5

圖 4-46 迎風面平均壓力實驗結果(Hr/Ho=6D/2D，S=0.5D)

(a)Re=9*10^4 (b)Re=1.3*10^5 (C)Re=1.8*10^5

圖 4-47 迎風面平均壓力實驗結果(Hr/Ho=6D/2D，S=1D)

(a)Re=9*10^4 (b)Re=1.3*10^5 (C)Re=1.8*10^5

圖 4-48 迎風面平均壓力實驗結果(Hr/Ho=6D/2D，S=2D)

接下來將改變來流的流況，使用的是都市地況(地況 A，α
=0.32)，邊界層厚度為 9.3D，目標模型高度為 2D，參考模型高度為 2D，實驗雷諾數範圍 6*10⁴~1.6*10⁵，參考模型與目標模型間隙為 0.5D、1D 與 2D，Cp 結果如圖 4-49 至 4-51 所示。由圖上可以觀察出，迎風面中間區域是一個較低壓的區域 Cp 都接近 0，除了較低的雷諾數下 Cp 值略有不同，在高雷諾數下不同間距比結果都相當接近。

![圖 4-49 都市地況迎風面壓力係數 (Hr/Ho=2D/2D，S=0.5D)](image)

![圖 4-50 都市地況迎風面壓力係數結果 (Hr/Ho=2D/2D，S=1D)](image)
第四章結果與討論

當目標模型高度增加為 4D 時，參考模型高度為 2D，來流是地況 A 的情形，實驗雷諾數由 6×10^4 至 1.6×10^5，參考模型與目標模型間隙為 0.5D、1D 與 2D，C_p 結果如圖 4-52 至 4-54 所示。由圖上可看出中間區域為低壓區域，當間隙比為 0.5D 時其結果相當接近；在大的間隙比時，基本上趨勢是接近的，但是因雷諾數不同而 C_p 會改變，高低壓分佈區塊很接近。

圈 4-51 都市地況迎風面壓力係數結果（$H_r/H_o=2D/2D$，$S=2D$）

圈 4-52 都市地況迎風面壓力係數（$H_r/H_o=6D/2D$，$S=0.5D$）
鄰棟建築物頂部流場及渦流溢放特性之研究

圖 4-53 都市地況迎風面壓力係數結果 (Hr/Ho=6D/2D，S=1D)

(a) Re=6*10⁴ (b) Re=1.1*10⁵ (c) Re=1.6*10⁵

圖 4-54 都市地況迎風面壓力係數結果 (Hr/Ho=6D/2D，S=2D)
第四節 風力係數實驗結果

本實驗採用六力平衡儀進行量測，以了解其橫風向及順風向力的變化。模型架設在風洞第一測試區第一及第二迴轉盤，六力平衡儀與目標模型底部連接，再經由資料擷取系統將電壓變化儲存於電腦中（如圖4-55所示），利用原廠校驗矩陣進行 X-Y-Z 三個方向的力與力矩轉換，並求取阻力係數 Cd 與橫風向的風力係數 Cl。本次實驗取樣頻率為 256HZ，取樣時間為 32 秒共 8192 個點，本研究亦利用橫風向力變化數據進行快速傅里葉轉換（FFT），了解其渦流溢放（vortex shedding）的關係。

![圖4-55 六力平衡儀實驗架設示意圖及座標定義](image)

本實驗首先進行單柱試驗，使用的目标方柱高度有 2D、4D 及 6D 三種，量測雷諾數範圍為 4.4x10⁴至 1.6x10⁵，所得之 Cd 如表4-1所示。目標模型高度為 2D 時，所量測到的阻力係數較小最大不超過 1.2，目標模型高度增加為 4D 時，阻力係數最大值為 1.48，雷諾數增加，阻力係數會下降，在本次實驗規劃最高風速下阻力係數為 1.38，
鄰棟建築物頂部流場及渦流溢放特性之研究

<table>
<thead>
<tr>
<th>表4-1 單柱模型之 Cd</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ho=2D</td>
<td>Ho=4D</td>
<td>Ho=6D</td>
</tr>
<tr>
<td>Re=44000</td>
<td>1.13</td>
<td>1.48</td>
<td>1.52</td>
</tr>
<tr>
<td>Re=101000</td>
<td>1.04</td>
<td>1.39</td>
<td>1.42</td>
</tr>
<tr>
<td>Re=160000</td>
<td>1.06</td>
<td>1.38</td>
<td>1.38</td>
</tr>
</tbody>
</table>

當目標模型與參考模型高度為 2D，間隙比由 0.5D 至 2D，來流雷諾數範圍由 4.4E4 至 1.6E5，其阻力係數結果如圖 4-56 所示。由圖上可以看出在 S=0.5D 時，阻力係數隨實驗雷諾數上升而下降，兩模型間隙加大時，阻力係數會隨雷諾數上升而增加。

圖 4-56 平均阻力係數結果 (Hr/Ho=2D/2D)

當參考模型高度增加為 4D 時，改變間隙及雷諾數進行實驗量測，其結果如圖 4-57 所示，由圖上可以發現，不同間隙比在雷諾數
第四章結果與討論

增加 Cd 值會減小。

![圖 4-57 平均阻力係數結果 (Hr/Ho=4D/2D)](chart1)

參考模型高度增加為 6D 時，改變間隙及雷諾數進行實驗量測，其結果如圖 4-58 所示，由圖上可以發現，不同間隙比在雷諾數增加 Cd 值會減小。

![圖 4-58 平均阻力係數結果 Hr/Ho=6D/2D](chart2)
鄰棟建築物頂部流場及渦流溢放特性之研究

目標模型高度增加為 4D 參考模型高度為 2D，改變兩模型間的間隙與雷諾數，所得之阻力係數 \(C_d \) 如圖 4-59 所示。

![圖 4-59 平均阻力係數結果 \(\frac{H_r}{H_o}=2D/4D \)]

參照模型高度為 4D，改變兩模型間的間隙與雷諾數，所得之阻力係數 \(C_d \) 如圖 4-60 所示，由圖上可觀察出隨雷諾數即間隙筆增加 \(C_d \) 呈現上升趨勢。

![圖 4-60 平均阻力係數結果(\(\frac{H_r}{H_o}=4D/4D \))]
第四章 結果與討論

參考模型高度為 4D，改變兩模型間的間隔與雷諾數，所得之阻力係數 C_d 如圖 4-60a 所示，兩模型間隔 0.5D 時，C_d 會隨雷諾數增加，當 $S=2D$ 時，C_d 會隨雷諾數增加而減小。

![圖 4-60a 平均阻力係數結果 (Hr/Ho=6D/4D)](image_url)

目標模型高度增加為 6D 參考模型高度為 2D，改變兩模型間的間隔與雷諾數，所得之阻力係數 C_d 如圖 4-61 所示。當間隔比或雷諾數增加，C_d 都是減小的。

![圖 4-61 平均阻力係數結果 (Hr/Ho=2D/6D)](image_url)
參考模型高度為 4D，S=0.5D~2D 與不同雷諾數，所得之阻力係數 Cd 如圖 4-62 所示，當間隙比或雷諾數增加，Cd 都是減小的。

![圖 4-62 平均阻力係數結果(Hr/Ho=4D/6D)](image)

參考模型高度為 6D，S=0.5D~2D 與不同雷諾數，所得之阻力係數 Cd 如圖 4-63 所示，當間隙比或雷諾數增加，Cd 都是減小的趨勢。

![圖 4-63 平均阻力係數結果(Hr/Ho=6D/6D)](image)
本研究將所得橫風向數據利用快速傅立葉轉換，找尋出橫風向振動主頻率。圖4-64~4-66為高度2D、4D及6D之頻譜圖。由圖上可以發現在低雷諾數時，主頻率不明顯，雜訊干擾較多。

圖4-64 Ho=2D模型之頻譜圖

圖4-65 Ho=4D模型之頻譜圖

圖4-66 Ho=6D模型之頻譜圖
鄰棟建築物頂部流場及渦流溢放特性之研究

當目標模型高度為 2D，改變不同參考模型、模型間隙及雷諾數進行受力量測，並進行 FFT，尋找出主頻並計算出 St，所得結果如圖 4-67 所示。

把目標模型高度增加為 4D，參考模型的高度分別為 2D、4D 及 6D，在不同模型間隙與雷諾數下，由力平衡儀所量得橫風向風力，進行 FFT，尋找出主頻並計算出 St，所得結果如圖 4-68 所示。
把目標模型高度增加為 6D，參考模型的高度分別為 2D、4D 及 6D，在不同模型間隙與雷諾數下，由力平衡儀所量得橫風向風力，進行 FFT，尋找出主頻並計算出 St，所得結果如圖 4-69 所示。

![圖 4-69 Ho=6D 目標模型雙柱實驗之 St 與 Re 結果](image)

模型橫風向受力也可以得到升力係數，表 4-2 為不同高寬比單柱之升力係數。由表上可發現在風速較小的時候，升力係數較大，原因可能是在低風速時邊界層不穩定所造成。

表 4-2 單柱之升力係數

<table>
<thead>
<tr>
<th></th>
<th>Ho=2D</th>
<th>Ho=4D</th>
<th>Ho=6D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.115</td>
<td>0.207</td>
<td>0.188</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.029</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.008</td>
<td>0.034</td>
<td>0.036</td>
</tr>
</tbody>
</table>
當目標模型高度為 2D，改變不同參考模型、模型間隙及雷諾數，橫風向受力情形轉換成升力係數，其結果如表 4-3~表 4-5 所示，在低風速小間隙時同樣有擾動較大的情況產生。

表4-3 雙柱實驗升力係數 (Hr/Ho=2D/2D)

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.404</td>
<td>0.287</td>
<td>0.322</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.06</td>
<td>0.054</td>
<td>0.094</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.008</td>
<td>0.037</td>
<td>0.023</td>
</tr>
</tbody>
</table>

表4-4 雙柱實驗升力係數 (Hr/Ho=4D/2D)

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.171</td>
<td>0.334</td>
<td>0.056</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.027</td>
<td>0.089</td>
<td>0.059</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.005</td>
<td>0.037</td>
<td>0.032</td>
</tr>
</tbody>
</table>

表4-5 雙柱實驗升力係數 (Hr/Ho=6D/2D)

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.581</td>
<td>0.163</td>
<td>0.068</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.041</td>
<td>0.026</td>
<td>0.029</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.0011</td>
<td>0.019</td>
<td>0.021</td>
</tr>
</tbody>
</table>

當目標模型高度為 4D，改變不同參考模型、模型間隙及雷諾數，橫風向受力情形轉換成升力係數，其結果如表 4-6~表 4-8 所示，在低風速情況下 C\textsubscript{1} 值較為偏大。
第四章 結果與討論

表4-6 雙柱實驗升力係數 (Hr/Ho=2D/4D)

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.058</td>
<td>0.051</td>
<td>0.08</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.028</td>
<td>0.026</td>
<td>0.03</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.029</td>
<td>0.026</td>
<td>0.029</td>
</tr>
</tbody>
</table>

表4-7 雙柱實驗升力係數 (Hr/Ho=4D/4D)

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.386</td>
<td>0.351</td>
<td>0.352</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.017</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.025</td>
<td>0.002</td>
<td>0.002</td>
</tr>
</tbody>
</table>

表4-8 雙柱實驗升力係數 (Hr/Ho=6D/4D)

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.079</td>
<td>0.044</td>
<td>0.034</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.018</td>
<td>0.0028</td>
<td>0.013</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.004</td>
<td>0.0011</td>
<td>0.018</td>
</tr>
</tbody>
</table>

當目標模型高度為 6D，改變不同參考模型、模型間隙及雷諾數，橫風向受力情形轉換成升力係數，其結果如表4-9~表4-10所示，在低風速情況下 Cl 值較為偏大。
鄰棟建築物頂部流場及渦流溢放特性之研究

表4-9 雙柱實驗升力係數（Hr/Ho=2D/6D）

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.316</td>
<td>0.258</td>
<td>0.44</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.089</td>
<td>0.084</td>
<td>0.105</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.044</td>
<td>0.0049</td>
<td>0.074</td>
</tr>
</tbody>
</table>

表4-10 雙柱實驗升力係數（Hr/Ho=4D/6D）

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.298</td>
<td>0.319</td>
<td>0.343</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.054</td>
<td>0.089</td>
<td>0.081</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.036</td>
<td>0.052</td>
<td>0.054</td>
</tr>
</tbody>
</table>

表4-11 雙柱實驗升力係數（Hr/Ho=6D/6D）

<table>
<thead>
<tr>
<th></th>
<th>S=0.5D</th>
<th>S=1D</th>
<th>S=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=44000</td>
<td>0.439</td>
<td>0.303</td>
<td>0.278</td>
</tr>
<tr>
<td>Re=101000</td>
<td>0.054</td>
<td>0.112</td>
<td>0.103</td>
</tr>
<tr>
<td>Re=160000</td>
<td>0.0394</td>
<td>0.075</td>
<td>0.05</td>
</tr>
</tbody>
</table>

本研究團對將實驗之方柱模型移動至第一迴轉盤進行實驗，第一迴轉盤距離第一測試區入口約為 3 米，將進行模型縱列與橫列之受力量測，第一迴轉盤位置處邊界層厚度小於 0.2D，風洞的測試轉速訂在 50rpm、100rpm、150rpm，圖 4-71 是目標模型高度為 6D 參考模型高度為 2D 之主流向風阻係數結果，參考模型擺放位置有縱列與橫列二種，參考模型與目標模型距離（S）分別為 0.5D、1D 與 2D。圖上實線為縱向排列的結果，在較低雷諾數下所得到的 Cd 數值較大約為 0.2，提高雷諾數值大小降至 0.15，降幅約為 25%。圖
第四章結果與討論

上虛線部分是參考模型與目標模型為橫列方式，在兩模型距離為 0.5D 時，其 CD 值隨雷諾數增加為先升後降。在間距比較大時 (1D 與 2D)，實驗所得到 CD 值隨雷諾數增加而下降。圖 4-72 為橫風向風力係數 CL 結果，在雷諾數較低時，數值最大為 0.025，在高雷諾數條件下，CL 值都在 0.005 以下。

![圖 4-71 平均阻力係數結果(Hr/Ho=2D/6D)](image)

![圖 4-72 橫風向平均風力係數結果(Hr/Ho=2D/6D)](image)
參考模型置換成高度 4D 的方柱模型，目標模型是高度為 6D 的方柱模型，參考模型與目標模型的間隔 (S) 為 0.5D、1D 與 2D。圖上虛線為目標模型與參考模型為橫風向排列，實線為目標模型與參考模型為縱向排列結果。由結果可以觀察出模型橫風向排列方式 CD 結果在隨雷諾數增加而遞減，參考方柱與目標方柱為縱向排列之 CD 的實驗結果如實線所示，不同實線代表不同間隙比，由結果可以觀察出在縱向排列方式下 CD 值隨著雷諾數增加而上升，但是其值為負數，目標方柱背壓造成力大於迎風面的受力。横風向風力係數結果如圖 4-74 所示，在低雷諾數比較偏大，在高雷諾數其值大小較穩定，在縱向排列結果 (實線) 都小於 0.1，如果參考模型與目標模型排列方式為橫風向排列則 CL 較大。

圖 4-73 橫風向平均風力係數結果 (Hr/Ho=4D/6D)
第四章結果與討論

目標模型高度改變為 4D 參考模型高度為 2D，在不同雷諾數下不同排列方式的 CD 值結果如圖 4-75 所示。在縱向排列時（實線結果），高雷諾數阻力係數趨向 0.8，在低雷諾數時阻力係數約在 1.5。由橫向排列結果（虛線）可以發現，在高雷諾數時，無論是大的間隙比或是小的間隙比阻力係數都較縱向排列為大，在低雷諾數及大間隙比時有相近似結果。圖 4-76 為目標模型高度 4D 參考模型高度為 2D 之橫風向風力係數結果，在縱向排列方式上，低雷諾數時風力係數較大，在高雷諾數時，無論是大的間隙比或是小的間隙比，風力係數都小於 0.1。在橫向排列方式上，在大的間隙比情況下，橫風向風力係數都低於 0.1，在小間隙比情況下在高雷諾數也低於 0.1，而在低雷諾數情況下係數較大。
鄰棟建築物頂部流場及渦流溢放特性之研究

圖 4-75 橫風向平均風力係數結果 (Hr/Ho=2D/4D)

圖 4-76 橫風向平均風力係數結果 (Hr/Ho=2D/4D)

參考模型高度增加為 6D 預設模型高度為 4D 的情況，在不同間隙比及縱向或橫向排列條件，改變雷諾數所得到的風阻係數如圖 4-77 所示。由圖上可以看 出，在縱向排列時（實線結果），阻力係數皆為負值，代表下游往上游推的力較大，阻力係數大小隨著雷諾數增加而有遞增的趨勢。而在橫向排列結果上（虛線結果），在低雷諾數時，間隙比較大者阻力係數較大，高雷諾數時阻力係數無論是
第四章結果與討論

小或大的間隙比都很接近。橫風向風力係數結果如圖 4-78 所示，當排列方式為縱向排列時，在小間隙比情況下，風力係數會隨雷諾數增加而減小；大間隙比結果如圖上紅色實線所示，會先增加再減小。排列方式改變為縱向排列時，在低間隙比情況下（黑色虛線），風力係數會隨雷諾數增加而先增加再減小；大間隙比（紅色虛線）情況下會隨雷諾數地增而遞減。

![圖 4-77 橫風向平均風力係數結果 (Hr/Ho=6D/4D)](image)

![圖 4-78 橫風向平均風力係數結果 (Hr/Ho=6D/4D)](image)
目標模型高度與參考模型高度皆為 2D 時，縱向排列與横向排列
在不同間隙比情況下，雷諾數與阻力係數的結果如圖 4-79 所示。在
縱向排列的情況下（實線結果），在不同間隙比會隨雷諾數增加而有
遞增的情況，大的間係比之風力係數較小的風力係數值為大，而在
縱向排列方式上皆為負風阻係數，代表下游往上游推的力較大。改
變排列方式為横向排列時，不同間隙比會隨雷諾數增加而遞減。横
風向風力係數與雷諾數關係如圖 4-80 所示，在縱向排列方式向會隨
雷諾數增加而有遞減的趨勢，在小的間隙比情況下（黑色實線）改
變幅度較大；在大的間係比（紅色實線）及高雷諾數時情況下，横
風向風力係數會小於 0.1。在横向排列結果如圖上（虛線所示），在
大間隙比（紅色虛線）結果較小的間隙比風力係數為大。

![圖 4-79 橫風向平均風力係數結果(Hr/Ho=2D/2D)](image)
第四章結果與討論

圖 4-80 橫風向平均風力係數結果 (Hr/Ho=2D/2D)

改變參考模型高度為 6D 目標模型高度為 2D 的情況，在不同間隙比及縱向或橫向排列條件，改變雷諾數所得到的風阻係數如圖 4-81 所示。由上可以觀察出當排列方式為縱向排列時（實線結果），在不同間隙比條件下，當雷諾數增加時，阻力係數都有上升的趨勢，而在縱向排列方式皆為負風阻係數，代表下游往上游推的力較大。當排列方式為橫向排列時（虛線結果），阻力係數約在 1.2 ~ 1.5，不同間隙比隨雷諾數增加而有先增後減的趨勢。。橫風向風力係數結果如圖 4-82 所示，當排列方式為縱向排列時（實線結果），在兩模型間隙為 0.5D 與 1D（黑色與藍色實線），橫風向風力係數會隨雷諾數增加而遞減至 0.1 以下，而在間隙為 2D 情況時有先增後減的情況。當模型排列方式為橫向排列時（虛線結果），橫風向風力係數較縱向排列為大，且會隨雷諾數增加而遞減趨勢。
鄰棟建築物頂部流場及渦流溢放特性之研究

圖 4-81 橫風向平均風力係數結果 (Hr/Ho=6D/2D)

圖 4-82 橫風向平均風力係數結果 (Hr/Ho=6D/2D)
第五節目標柱體下游渦流溢放量測

下游流場渦流溢放量測是使用熱線測速儀進行量測，取樣頻率為 512HZ，取樣數為 16384 點，並配合移動小型機構在目標模型下游 2D 位置進行量測（如圖 4-83 所示），量測最低位置離風洞地板 1.33D 高度。使用目標模型高度有 2D 與 4D 兩種，在目標模型高度 2D 情況下每上升 0.133D 高度量測一次，模型高度 4D 的情況是每上升 0.267D 高度量測一次，最高量測位置在模型頂部上方 1D 處，並將所的數據進行快速傅力葉轉換。

在目標模型高度 2D 的情況下，模型前方沒有擺上阻尼塊，來流雷諾數為 1.3×10^5，參考模型高度 2D，圖 4-84 是目標模型與參考模型間距 0.5D 時所測得不同高度的 FFT 結果。因為其為三維流場結構較為複雜，由圖上並無法很清楚指出溢放頻率。
圖 4-84 不同高度頻譜圖 (Hr/Ho=2D/2D, S=0.5D)

在相同的模型增加參考模型與目標模型距離至 2D 進行量測，所得結果如圖 4-85 所示，由圖上並無法很清楚觀察出溢放頻率。

圖 4-85 不同高度頻譜圖 (Hr/Ho=2D/2D, S=2D)

當參考模型高度增加為 6D，目標模型高度為 2D，兩模型間距 0.5D 時，在下游相同位置進行不同高度渦流溢放量測，圖 4-86 為量測所得 FFT 結果。由圖上可以觀察出其溢放頻率為 6.84HZ，所
對應的 St 為 0.081，接近之前六力平衡儀之 St 為 0.10。

當參考模型與目標模型高度比維持 6D/2D，增加兩模型之間隙至 2D，進行高度相同位置之溢放量測，所得結果如圖 4-87 所示。

由圖上可以觀察出其溢放頻率應為 6.84Hz，所對應的 St 為 0.098，

更為接近之前六力平衡儀之 St 為 0.10。

![圖 4-86 不同高度頻譜圖 (Hr/Ho=6D/2D, S=0.5D)](image_url)

![圖 4-87 不同高度頻譜圖 (Hr/Ho=6D/2D, S=2D)](image_url)
鄰棟建築物頂部流場及渦流溢放特性之研究
第五章 結論與建議

第一節 結論

(1) 目標模型高度 2D 時，參考模型高度 4D 及 6D 時，頂部壓力分佈，隨兩模型之間隙與雷諾數增加，高壓分佈區域往下游移動；目標模型高度 4D 時，參考模型高度 6D 時，趨勢則相反，其可能原因是實驗位置邊界層厚度約為 1D，在模型高度較低時容易受到邊界層影響。

(2) 在都市型地況下，迎風面壓力分佈結果可以發現，中間區域都是一個較為低壓的區域。

(3) 三個不同高度單一模型 Cd 值都會隨雷諾數增加而有減少的趨勢，相同雷諾數下不同高寬比之 Cd 值並不相同，在這個實驗中有雷諾數效應產生。

(4) 縱向排列情況下，由雙柱模型結果發現，當目標建築物高度較低且間距比較大時，Cd 有呈現減少的趨勢，有部份 Cd 值由正轉負，代表目標模型背風面受力較迎風面為大。

(5) 橫向排列情況下，由雙柱模型結果發現，目標模型結果都呈現遞減趨勢。

(6) 在橫風向 Cl 的實驗結果發現在低雷諾數時數值都較大，其原因可能是因為在風速較低情況下，邊界層結構不是很穩定，較大的不規則擾動造成，相同實驗模型在比較大雷諾數及間距比情況下 Cl 並不會有很大數值出現。

(7) 由不同高度渦流溢放量測實驗發現當參考模型較高時，其溢放頻率可以較明顯觀察出來。
第二節 建議

由目前結果可以發現參考建築物與目標建築物高度差距是會影響目標建築物頂部壓力分佈情況，後續應規劃更多雙棟建築物之排列組合狀況，以確立邊界層流中雙棟建築物之風力特性，而且縱向排列方式對目標模型影響較大。目前規範對於頂部風場的探討較少，有關風壓部分著重於女兒牆內外壓差的探討，可以在頂部流場風壓上規劃更多的量測，以利其他使用者之參考。

在低雷諾數或三維流場量測下有較多雜訊產生，可以藉由數據分析方式（如小波轉換或 Hilbert 轉換）尋找出相關影響的機制。

目前數值模擬只有定常 (steady) 結果，應該建立實驗室非穩態資料庫能力。
参考書目

15. 蔡益超、陳瑞華、項維邦，2004年，『建築物耐風設計規範與解說（草案）』，內政部建築研究所編修。

16. 陳文良，1997年，『雙矩形建築鄰近風場之數值模擬研究』，國立中興大學土木工程研究所，碩士論文，方富民教授指導，台中。

17. 卓勇志，2001年，『邊界層中雙棟並排矩形建築之表面風壓量測』，國立中央大學土木工程研究所，碩士論文，朱佳仁教授指
參考書目

18. 熊萬銀，1995 年，『雙棟建築改變棟距之風環境研究』，國立成功大學建築研究所，碩士論文，廖慧明、周榮華教授指導，台南。
19. 白佳燕，2003 年，『應用 FLDV 與 PIV 探討並列鈍形體尾流場之特性』，國立中興大學土木工程研究所，碩士論文，林呈教授指導，台中。
20. 內政部，2007 年 『建築耐風設計規範及解說』
附錄
附錄一 期末審查委員意見答覆

<table>
<thead>
<tr>
<th>委員意見</th>
<th>回覆</th>
</tr>
</thead>
<tbody>
<tr>
<td>蔡建築師:</td>
<td>編排及編打錯誤將在成果報告中訂正，並會將使用儀器名稱做統一。</td>
</tr>
<tr>
<td>內文字型大小，段落編號，名稱統一。儀器名稱應一致，例如 P.11中熱線流速儀應對照 P.12圖3-4熱線測速儀。</td>
<td></td>
</tr>
<tr>
<td>土木技師公會</td>
<td>會將目前成果作整理，並與規範中相關資料做比對。</td>
</tr>
<tr>
<td>本研究案對於研究標的做了甚多實驗，得到許多數據，極具參考價值。建議設法彙整成果，俾能達到研究之預期成果，作為實務設計之參考。</td>
<td></td>
</tr>
<tr>
<td>方教授</td>
<td>參數表將會在成果報告內做增加，並會將 RMS 的資料增加，會將 CFD 結果表面壓力與實驗比較。</td>
</tr>
<tr>
<td>請修正字體大小不一部分，另內文流畅度應再做潤飾。</td>
<td></td>
</tr>
<tr>
<td>第 3 頁中之『網頁』與第 18 頁中之『FKUENT』，應為筆誤，請予以修正。</td>
<td></td>
</tr>
<tr>
<td>應加強圖 3-8(第 16 頁)中之說明(如 H_r 與 H_0；x 與 y 方向等) k-ε紊流模型應用於鈍體流場(bluff-body flows)並不如大渦流模擬(large-eddy simulation)來得好，在本研究中數值模擬部分宜採用後者。</td>
<td></td>
</tr>
</tbody>
</table>
王技師
案屬風域中流場變化風洞模型測試試驗及相鄰建築物間距、高度變化等影響討論研究，目前對於風規範及設計實務尚不影響。惟將來測試有結論時，對臨棟建築有影響之風力控制，再考慮修訂風力規範中屋頂附屬構件風力計算或其他應用。
屋頂上某一高度之風場干擾情況及風壓情況能否量測？請與先前研究單一建築風壓情況比較，並做整體性的討論。

朱教授
P17，P56，P57，「升力係數」建議改為「側向力（Lateral）係數」。
為方便工程應用，應該提出間距比S/D 大於多少時，下游建築之風力係數Cd、CL不受前棟建築干擾？P56，P57，Re=44000，CL值有大到0.58、0.40，這與左右對稱式建築(CL=0)相差太多，應予說明。
風洞實驗可否與數值模式互相驗證？

林教授
本研究也許試驗的類型及量測位置之不一，造成不同之試驗結果。是否能就每一試驗結果之圖表，將其結果更具體說明。
照片上傳輸線問題是否影響數據

附錄

會在成果報告內做修正

前兩項意見將在成果報告內做增加及修正，低雷諾數 CL 值將做進一步確認。

在成果報告將會增加實驗過程描述，照片是因拍照關係所以將傳輸線盤起，實際實驗時會將傳輸線拉直。
黃總經理
結論中是否可以增加橫向不同間隙比或在 S/D=0.5 情況時，CP 之改變狀況，或是內側風壓是否有異常改變。
專有名詞是否加上英文註釋，以方便進一步搜尋參考資料。

| 成果報告內會增加專有名詞的英文翻譯，及訂正繕打的錯誤，會在期末報告將間隙比結果作更好的呈現。 | |