::: 首頁   資訊與服務    研究成果  
研究成果

創新室內空氣品質監控技術及大數據應用分析之研究

計畫主持人: 鄭元良
協同主持人: 周伯丞
執行單位:
執行期程:
GPN:
ISBN:
MOIS:
組別: 環境控制組
執行方式: 協同研究
關鍵詞: 大數據分析、室內空氣品質、智慧通風
參考文獻:

中文摘要


一、研究緣起

全球暖化壓力下,台灣地屬環太平洋熱濕氣候帶,近年來雖因綠建材應用日益普及,控制了來自建材的污染源,致一般場所室內空氣品質有所提升,惟仍有部分建築類型因使用之必需,造成室內空氣中甲醛與TVOC等污染物濃度偏高,單純以引入新鮮空氣稀釋室內污染物濃度之空調手法勢必增加龐大電費負擔。為維護國人健康生活條件,本計畫結合智慧感知控制技術,並針對現有空氣清淨控制技術進行檢討,調查非建材污染源造成室內空氣品質不佳之場所,建構具有節能效益之智慧建築室內健康環境系統。

二、研究方法及過程

本計畫將針對密閉空間換氣變化及耗電效能,及其對室內空氣影響之變化,藉由文獻探討與統整,並利用儀器設備進行實測比對,針對在地氣候所需,進一步深入研究其模式比較分析及變化。執行內容如下:

1.蒐集國內外大數據技術應用於室內空氣環境資料分析之文獻及案例,並進行分析比較與探討。預計蒐集之文獻及案例分類如下:

(1)蒐集病態態建築起因與作症狀等相關文獻。

(2)蒐集通風模式種類之研究文獻。

(3)蒐整污染物質之危害,起因與人體病症。

(4)蒐集建築室內環境相關混和通風所探討之相關因子。

2.蒐集國內外室內空氣環境監控技術發展現況及應用案例,並探討監控數據之應用模式,預計蒐集之技術與應用案例重點如下:

(1)探討設備運作理論與所需評估之項目。

(2)釐清室內污染物來源之實驗模擬污染物重要因素。

創新室內空氣品質監控技術及大數據應用分析之研究

(3)設定通風方式設置與配置模式,並設計相關所需氣候及環境變因。

3.完成住宅建築類型中至少北中南三例,非建材所致空氣污染源之IAQ樣態進行大數據分析,並提出IAQ改善策略建議。

(1)北中南住宅建築現狀案例空氣品質(CO2及甲醛)實測。

(2)建立大數據資料庫。

(3)歸納分析北中南住宅建築空氣品質現況,並提出適用於台灣北中南各地的應用混合式通風方式之創新空氣品質監控技術。

(4)設計足尺實驗室與相關空氣品質監測與除污設備,進行實驗。

4.完成室內環境健康監控技術調查,研發具有省能效益之混合型空氣清淨技術。

(1)將實驗結果根據北中南不同區域特性,搭配大數據分別進行模组設定與資料整合及運算。

(2)依據不同污染物清污模式與耗電進行分析比對。

(3)提出適用於台灣各地兼具“健康”“節能”創新室内空氣品質監控技術。

三、重要發現

本研究以建築居住空間單元為主體,首先針對住宅建築類型台灣北中南區住宅各以一例,將其非建材所致空氣污染源之IAQ樣態進行大數據分析;然後利用足尺研究室模擬多人密閉的住宅空間,以電漿技術配合通風扇去除氣態污染物及揮發性物質,並利用氣體偵測器遠端控制軟體與通風扇連動,探討不同混合式通風模擬下,室內污染物甲醛及二氧化碳濃度調控與變化,以綜合歸納評估結果,供設計及使用者參考可達到健康與舒適目的。研究具體結論如下:

1.建築居住空間之溫溼度與其空間基本設計及空調/除溼設備的開啟息息相關,若能在建築設計之初考量自然通風設計理念,搭配除濕設備,當可營造一個舒適且節能的居住空間。

2.CO2濃度值在臥室以外之空間在一般住宅空間尚屬良好,但夜晚於密閉臥室中每

每有超標之狀況發生,因此臥室的通風設計為住宅空調設計應被更加重視的一環。

摘要

3.鄰近工業區之夜間無人使用之客廳或書房會偵測到夜晚甲醛濃度因為不明原因有升高的情況,初步判斷是受戶外飄入之汙染物造成,未來應深入同步探討戶外有機物汙染源對於夜間住宅室內空氣品質之影響。

4.與Type 1(CO2 A組-弱通風模式))相比,Type 2 (CO2 B組-強通風模式)將CO2

濃度控制在較嚴苛的條件下,並於實驗時間中頻繁啟動6次排風機制引入外氣,確實有效控制室內CO2濃度,避免空氣品質超出法定標準(1000ppm)。

5.Type 3(HCHO A組-弱電漿模式)與Type 4(HCHO B組-強電漿模式)研究模組為模擬室內無人員之情況,故二氧化碳濃度趨勢變化不大,均維持於450~560ppm間,可以得知電漿除醛過程中產生的CO2並不會影響室內整體CO2濃度,實驗亦證實啟動電漿機(Plasma)可以有效清淨室內甲醛濃度。Type 4(HCHO B組-強電漿模式)將室內甲醛清除濃度設定較為嚴格(0.06ppm時關閉電漿機),較可控制室內甲醛濃度於四小時實驗中不易超標。

6.相較於Type 5(CO2+HCHO A組-弱電漿通風模式) (HCHO監測濃度低於0.07ppm關閉電漿機),Type 6(CO2+HCHO B組-強電漿通風模式)條件設定較為嚴格(HCHO監測濃度低於0.06ppm關閉電漿機),於四小時實驗中Type 6(CO2+HCHO B組-強電漿通風模式)更可有效控制室內總體空氣品質。

7.本計畫使用積分概念,提出可應用於未來室內空氣品質大數據分析用之健康係數(Health Factor)模型,可有利於後人深入探討之用。

8.本計畫運用電腦連動設備(PLC控制電腦)可以自動控制相關設備,並記錄室內空氣品質的變化。本研究有效尋找出室內空氣品質最佳化的模組為Type 6(強電漿通風模式):HCHO監測系統每25分鐘監測一次,當HCHO監測濃度高於0.08ppm啟動電漿機,HCHO監測濃度低於0.06ppm關閉電漿機,並即時監測CO2濃度,當CO2濃度高於1000ppm啟動通風扇、低於800ppm則關閉通風扇,本研究將此研究模組提供予醫療機構作為控制室內空氣品質監控的建議標準。

四、主要建議事項

根據研究發現,本研究針對行政檢查業務協同民間辦理處理的法制化,提出下列

創新室內空氣品質監控技術及大數據應用分析之研究

具體建議。以下分別從立即可行建議及中長期建議加以列舉。

建議一

(擴大量測範圍):立即可行建議

主辦機關:內政部建築研究所

協辦機關:內政部營建署

擴大量測與分析台灣各區不同住宅類型與使用行為形成的室內空氣品質(新增TVOC與PM2.5)狀況,其量測其應拉長為至少7-30天並同時於量測空間窗外安置相同偵測器進行比對,以多項、長期、多例的實測資料與環保署數據共同納入大數據分析最終建立資料庫,可供各地建築設計者使用,以期建立智慧化的調控功能。

建議二

(對通風系統空調耗能方面進行評估):立即可行之建議

主辦機關:內政部建築研究所

協辦機關:經濟部能源局

未來計畫可納入強制通風系統造成空調能耗方面的評估,以求在”節能”與”健康”二者之中取得平衡點。

建議三

(制訂定對新舊建築物裝置監測設備與未來維修之注意要項或設置原則):中長期建議

主辦機關:內政部建築研究所

協辦機關:內政部營建署

未來計畫可納入盤查國內外室內空氣品質監測技術與儀器,並了解其營運管理策           略與成本效益分析,尤其在零組件與耗材壽命之考量及組裝技術與監測位置與頻度之選定。並提出就智慧技術發展,考量訂定對新舊建築物裝置監測設備與未來維修之注意要項或設置原則。

建議四

(因應少子化與老年社會趨勢,連結相關課題):中長期建議

主辦機關:內政部建築研究所

協辦機關:內政部營建署

因應少子化與老年社會的趨勢,上述實測計畫可優先考慮連結少子化、高齡的相關課題。



英文摘要


Under the pressure of global warming, Taiwan is located at the hot and wet climate region of the Pacific Rim. Recently, though green architecture materials have been widely utilized and the pollution source has been controlled from the architecture materials, the residence is not regulated by the announced 1st ten and 2nd sixteen public spaces of the indoor air laws. In spite the eight indicators of the smart building evaluation include energy-saving management, health & comfort and smart innovation and the management of indoor air quality is thereby enhanced, there happens high formaldehyde concentrations in some buildings for special use. The fee of electrical power must be increased as the introduction of fresh outdoor air to help improve the indoor air quality.  We develop the novel monitor system of indoor air quality incorporating smart sensors and controllers for the pursuit of sustainability and the national health living conditions. In the study, the current control technologies of air cleaning were also reviewed and the poor indoor air quality caused by the pollution source not including building materials was investigated. Finally, a big data system is constructed to analyze the documents of indoor health environment with energy-saving effects.

The plan will focus on the changes in air-conditioning changes and power consumption in confined spaces, and the changes in the impact on indoor air. Through literature review and integration, and using instruments and equipment for actual measurement comparison, further in-depth needs for local climate needs. Study its model comparison analysis and changes. The implementation content is as follows:

1.Collect literatures and cases of domestic and foreign big data technology applied to indoor air environment data analysis, and analyze and compare them. The literature and cases that are expected to be collected are classified as follows:

(1)Collect relevant literature on causes and symptoms of sick state buildings.

(2)Collect research literature on the types of ventilation modes.

(3)Search for the hazards, causes and human diseases of pollutants.

(4)Collect relevant factors discussed in the mixed ventilation of the indoor environment  of the building.

2.Collect current situation and application cases of indoor and outdoor air environment monitoring technology at home and abroad, and explore the application mode of monitoring data. It is expected that the collected technologies and application cases will focus on the following:

(1)Explore the theory of equipment operation and the items to be evaluated.

(2)Clarify the important factors of experimental simulated pollutants in the source of indoor pollutants.

(3)Set the ventilation mode setting and configuration mode, and design the relevant climate and environmental causes.

3.Completion of at least three cases of residential buildings, including IAQ patterns of air pollution sources caused by non-building materials, and proposed 1AQ improvement strategy.

(1)The air quality (CO2 and formaldehyde) of the current situation of residential buildings in North Central South is measured.

(2)Establish a big data database.

(3)Inductively analyze the current status of air quality in residential buildings in North Central South, and propose innovative air quality monitoring technology for hybrid ventilation methods applicable in all parts of North, Central and South Taiwan.

(4)Design a full-scale laboratory and related air quality monitoring and decontamination equipment to conduct experiments.

4.Complete indoor environmental health monitoring technology survey and develop hybrid air purification technology with energy saving benefits.

(1)According to the characteristics of different regions in North, Central and South, the experimental results are combined with big data for module setting and data integration and calculation.

(2)Analyze the comparison according to different pollutant cleaning modes and power consumption.

(3)Propose an innovative indoor air quality monitoring technology that is applicable to both “healthy” and “energy-saving” in Taiwan.

This study takes the residential living space unit as the main body. Firstly, for the residential building type, the North Central and Southern District of Taiwan, each case is taken as an example. The IAQ pattern of the air pollution source caused by non-building materials is analyzed by big data. Then, the full-scale research room is used to simulate the multi-person. Closed residential space, using plasma technology with a fan to remove gaseous pollutants and volatile substances, and using the gas detector remote control software to communicate with the ventilation fan to explore the indoor pollutants formaldehyde and carbon dioxide under different mixed ventilation simulations. Concentration control and changes to comprehensively summarize the results of the assessment for design and user reference for health and comfort. The specific findings of the study are as follows:

1.The temperature and humidity of the building living space is closely related to the basic design of the space and the opening of the air conditioning/dehumidification equipment. If the natural ventilation design concept can be considered at the beginning of the building design, the dehumidification equipment can be combined to create a comfortable and energy-saving living space.

2.The CO2 concentration value is good in the general residential space in the space outside the bedroom, but the nighttime in the closed bedroom often exceeds the standard condition, so the ventilation design of the bedroom should be a more important part of the residential air conditioning design.

3.The living room or study room that is not used in the night near the industrial area will detect the increase of formaldehyde concentration at night due to unknown reasons. The initial judgment is caused by the pollutants floating in the outdoor. In the future, the outdoor organic pollution source should be discussed in depth. The effect of indoor air quality at night.

4.Compared with Type 1 (CO2 Group A - weak ventilation mode), Type 2 (CO2 Group B - Strong Ventilation Mode) controls the CO2 concentration under more severe conditions and starts 6 times frequently during the experimental time. The introduction of external air by the exhaust mechanism ensures effective control of indoor CO2 concentration and avoids air quality exceeding the legal standard (1000 ppm).

5.Type 3 (HCHO Group A - Weak Plasma Mode) and Type 4 (HCHO Group B - Strong Plasma Mode) The research module is for the simulation room without personnel, so the trend of carbon dioxide concentration is not much changed, and it is maintained at 450~560ppm. In the meantime, it can be known that the CO2 generated during the plasma removal of the aldehyde does not affect the overall CO2 concentration in the room. The experiment also confirmed that the start of the plasma can effectively clean the indoor formaldehyde concentration. Type 4 (HCHO Group B - Strong Plasma Mode) set the indoor formaldehyde removal concentration to a stricter (closed plasma machine at 0.06ppm), and the formaldehyde concentration in the control room is not easy to exceed the standard in the four-hour experiment.

6.Compared with Type 5 (CO2+HCHO Group A - weak plasma ventilation mode) (HCHO monitoring concentration is lower than 0.07ppm to turn off the plasma machine), Type 6 (CO2+HCHO B group - strong plasma ventilation mode) conditions are set Strict (HCHO monitoring concentration below 0.06ppm to turn off the plasma machine), Type 6 (CO2+HCHO B-strong plasma ventilation mode) can effectively control the overall indoor air quality in the four-hour experiment.

7.This project uses the concept of integration to propose a Health Factor model that can be applied to future indoor air quality big data analysis, which can be useful for future generations to explore.

8.This project uses computer linkage equipment (PLC control computer) to automatically control related equipment and record changes in indoor air quality. This study effectively finds out that the indoor air quality optimization module is Type 6 (strong plasma ventilation mode): HCHO monitoring system is monitored every 25 minutes, when the HCHO monitoring concentration is higher than 0.08ppm, the plasma machine is started, and the HCHO monitoring concentration is low. The plasma machine was turned off at 0.06ppm, and the CO2 concentration was monitored immediately. When the CO2 concentration was higher than 1000ppm, the ventilation fan was started, and the ventilation fan was turned off when the temperature was lower than 800ppm. This research module was provided to the medical institution as the control of indoor air quality control. Recommended standard.